Hydrothermal synthesis of nitrogen doped graphene supported cobalt ferrite (NG@CoFe2O4) as photocatalyst for the methylene blue dye degradation

Authors

  • Heena Khajuria Department of Chemistry, University of Jammu, Jammu Tawi, India
  • Lobzang Tashi Department of Chemistry, University of Jammu, Jammu Tawi, India
  • Manesh Kumar Department of Chemistry, University of Jammu, Jammu Tawi, India
  • Rajinder Singh Department of Chemistry, University of Jammu, Jammu Tawi, India
Abstract:

A magnetic NG@CoFe2O4 photocatalyst was developed via a facile hydrothermal method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM) techniques. The CoFe2O4 nanoparticles were found to have a size between 100-150 nm and were uniformly dispersed on the nitrogen doped graphene. Magnetic studies showed that the NG@CoFe2O4 photocatalyst can be easily separated from the solution by the simple bar magnet. The photocatalytic degradation of methylene blue dye (MB) was studied under visible irradiation. The photocatalytic performance of NG@CoFe2O4 photocatalyst was found to be influenced by structural and optical properties as well as the surface area of the samples. The NG@CoFe2O4 photocatalyst exhibited improved photodegradation performance when compared with pure CoFe2O4. The as synthesized NG@CoFe2O4 can be a probable candidate used as a visible-light active magnetically separable photocatalyst and so could be used as a potent separation tool in waste water treatment.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite.

An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET s...

full text

Nitrogen doped TiO2 for efficient visible light photocatalytic dye degradation

In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...

full text

Mesoporous WO3/TiO2 Nanocomposites Photocatalyst for Rapid Degradation of Methylene Blue in Aqueous Medium

This paper presents the wet chemical synthesis of WO3/TiO2 nanocomposites using hydrothermally prepared monoclinic WO3 and anatase TiO2 nanoparticles as composite matrices and filler, respectively. The nanocomposites were prepared in different compositions, i.e. WO3:TiO2 ratio (w/w) of (1:1), (1:3), and (3:1). Physicoche...

full text

Synthesis and characterization of Ag doped Cobalt Ferrite nanocomposite

Nanomaterials are attracted a great deal of attention from scientific community due to its unique properties and applications. The small size ferrites have opened the door for intensive research to utilize their properties for biomedical applications. Cobalt ferrite nanomaterials and its silver doped (Ag-doped) nanocomposites have been prepared using solid state combustion method. This combusti...

full text

Ni/Ti layered double hydroxide: synthesis, characterization and application as a photocatalyst for visible light degradation of aqueous methylene blue.

Visible light responsive 2 : 1 Ni/Ti layered double hydroxide (LDH) was synthesized by a single step hydrothermal route using commercially available Ni(NO3)2·6H2O, TiCl4 and urea. The material exhibited significant absorption in the visible range with a very narrow band gap (2.68 eV). This could be attributed to structural defects as confirmed by diffuse reflectance spectroscopy (DRS), photolum...

full text

Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite using response surface methodology

The photocatalytic degradation of methylene blue was investigated with TiO2 and Fe2O3 nanoparticles supported on natural zeolite. The synthesized photocatalyst was characterized by XRD, XRF, FT-IR, EDX, FE-SEM, and BET analyses. The results of XRD, FT-IR, and EDX confirmed the successful loading of Fe3+ doped TiO2 nanoparticles on natural zeolite. Further, the FE-SEM results confirmed the depos...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  149- 159

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023